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Preface

The Preface includes these sections:

Using This Guide (p. viii)
Related Products (p. x)

Typographical Conventions (p. xii)

Explains the organization of this guide.

Lists products that may be relevant to the kinds of tasks
you can perform with the GARCH Toolbox.

Describes the typographical conventions used in this
guide.
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Using This Guide

viii

“Introduction” introduces the GARCH Toolbox, lists other required toolboxes,
and describes the intended audience as well as the use of relevant common
mathematical terms.

“GARCH Overview” provides a brief overview of GARCH, then demonstrates
the use of the GARCH Toolbox by estimating the model parameters, and
performing pre- and postestimation analysis. An example shows the use of
quantitative and qualitative correlation tests to check for GARCH effects in the
observed return series.

“GARCH Specification Structure” explains the creation, modification, and use
of a specification structure for describing conditional mean and variance
models, and for controlling the estimation process.

“Simulation” tells you how to simulate sample paths for the return series,
innovations, and standard deviations processes, while minimizing transient
effects.

“Estimation” describes the estimation, by maximum likelihood, of the
parameters of the conditional mean and variance specifications for a specified
univariate return series.

“Forecasting” describes the prediction of the conditional mean and standard
deviation of a univariate return series some number of periods into the future.
It also discusses the computation of volatility forecasts of asset returns over
multi-period holding intervals.

“Regression Components in Conditional Mean Models” explains the use of a
regression component in the conditional mean model.

“Model Selection and Analysis” discusses tests to help you determine the
appropriateness of a specific GARCH model, and compare alternative models.
It also explains how equality constraints can help you assess parameter
significance.

“Advanced Example” shows the relationship between forecasting and
dependent-path Monte Carlo simulation by comparing and contrasting the
forecasts with their counterparts derived using Monte Carlo simulation.

“Function Reference” describes the individual functions that make up the
GARCH Toolbox. The description of each function includes a synopsis of the
function syntax, as well as a complete explanation of its arguments and
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operation. It may also include examples and references to additional reading
material.

“Glossary” defines terms associated with modeling the volatility of economic
time series.

“Bibliography” lists published materials that support concepts implemented in
the GARCH Toolbox.

ix
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Related Products

The MathWorks provides several products that are related to the kinds of tasks
you can perform with the GARCH Toolbox. For more information about any of

these products, see either

® The online documentation for that product if it is installed or if you are
reading the documentation from the CD

® The MathWorks Web site, at http://www.mathworks.com; see the “products”

section

Note The toolboxes listed below all include functions that extend MATLAB
capabilities. The blocksets, if any, all include blocks that extend Simulink

capabilities.
Product Description
Curve Fitting Toolbox Perform model fitting and analysis

Database Toolbox
Datafeed Toolbox

Excel Link

Financial Derivative
Toolbox

Financial Time Series
Toolbox

Financial Toolbox

MATLAB Compiler

MATLAB Report
Generator

Exchange data with relational databases

Acquire real-time financial data from data
service providers

Use MATLAB with Microsoft Excel

Model and analyze fixed-income derivatives
and securities

Analyze and manage financial time-series data

Model financial data and develop financial
analysis algorithms

Convert MATLAB M-files to C and C++ code

Automatically generate documentation for
MATLAB applications and data




Related Products

Product

Description

MATLAB Runtime
Server

MATLAB Web Server

Optimization Toolbox

Simulink Report
Generator

Statistics Toolbox

Deploy runtime versions of MATLAB
applications

Use MATLAB with HTML Web applications

Solve standard and large-scale optimization
problems

Automatically generate documentation for
Simulink and Stateflow models

Apply statistical algorithms and probability
models

xi
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xii

Typographical Conventions

This manual uses some or all of these conventions.

Item

Convention

Example

Example code

Function names, syntax,
filenames, directory/folder
names, user input, items in
drop-down lists

Buttons and keys

Literal strings (in syntax
descriptions in reference
chapters)

Mathematical
expressions

MATLAB output

Menu and dialog box titles

New terms and for
emphasis

Omitted input arguments

String variables (from a
finite list)

Monospace font

Monospace font

Boldface with book title caps

Monospace bold for literals

Italics for variables

Standard text font for functions,

operators, and constants

Monospace font

Boldface with book title caps

Italics

(...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

Monospace italics

To assign the value 5 to A,
enter

A=5

The cos function finds the
cosine of each array element.

Syntax line example is
MLGetVar ML_var_name

Press the Enter key.

f = freqspace(n, 'whole')

This vector represents the
polynomial p = x? + 2x + 3.

MATLAB responds with
A =
5

Choose the File Options
menu.

An array is an ordered
collection of information.

[c,ia,ib] = union(...)

sysc = d2c(sysd, 'method")




Introduction

“Introduction” includes these sections:

GARCH Overview (p. 1-2)

The GARCH Toolbox (p. 1-4)

Software Requirements and
Compatibility (p. 1-5)

Expected Background (p. 1-6)

Technical Conventions (p. 1-7)

Data Sets (p. 1-11)

Introduces GARCH and the characteristics of GARCH
models that are commonly associated with financial time
series.

Introduces the GARCH Toolbox, and describes its
intended use and its capabilities.

Lists other MathWorks toolboxes and version
compatibility required by the GARCH Toolbox.

Describes the intended audience for this product.

Describes the use of common mathematical terms in this
guide. See the “Glossary” for definitions of
GARCH-specific terms.

Introduces the data sets that are used in examples
throughout this manual.
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GARCH Overview

This section discusses

¢ “Introducing GARCH” on page 1-2
® “Why Use GARCH?” on page 1-2
® “GARCH Limitations” on page 1-3

Introducing GARCH

GARCH stands for Generalized Autoregressive Conditional
Heteroscedasticity. Loosely speaking, you can think of heteroscedasticity as
time-varying variance (i.e., volatility). Conditional implies a dependence on the
observations of the immediate past, and autoregressive describes a feedback
mechanism that incorporates past observations into the present. GARCH then
is a mechanism that includes past variances in the explanation of future
variances. More specifically, GARCH is a time-series technique that allows
users to model the serial dependence of volatility.

In this manual, whenever a time series is said to have GARCH effects, the
series is heteroscedastic, i.e., its variances vary with time. If its variances
remain constant with time, the series is homoscedastic.

Why Use GARCH?

GARCH modeling builds on advances in the understanding and modeling of
volatility in the last decade. It takes into account excess kurtosis (i.e., fat tail
behavior) and volatility clustering, two important characteristics of financial
time series. It provides accurate forecasts of variances and covariances of asset
returns through its ability to model time-varying conditional variances. As a
consequence, you can apply GARCH models to such diverse fields as risk
management, portfolio management and asset allocation, option pricing,
foreign exchange, and the term structure of interest rates.

You can find highly significant GARCH effects in equity markets, not only for
individual stocks, but for stock portfolios and indices, and equity futures

markets as well [5]. These effects are important in such areas as value-at-risk
(VaR) and other risk management applications that concern the efficient

allocation of capital. You can use GARCH models to examine the relationship
between long- and short-term interest rates. As the uncertainty for rates over
various horizons changes through time, you can also apply GARCH models in

1-2
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the analysis of time-varying risk premiums [5]. Foreign exchange markets,
which couple highly persistent periods of volatility and tranquility with
significant fat tail behavior [5], are particularly well suited for GARCH
modeling.

Note Bollerslev [4] developed GARCH as a generalization of Engle’s [12]
original ARCH volatility modeling technique. Bollerslev designed GARCH to
offer a more parsimonious model (i.e., using fewer parameters) that lessens
the computational burden.

GARCH Limitations

Although GARCH models are useful across a wide range of applications, they
do have limitations:

* GARCH models are only part of a solution. Although GARCH models are
usually applied to return series, financial decisions are rarely based solely on
expected returns and volatilities.

¢ GARCH models are parametric specifications that operate best under
relatively stable market conditions [15]. Although GARCH is explicitly
designed to model time-varying conditional variances, GARCH models often
fail to capture highly irregular phenomena, including wild market
fluctuations (e.g., crashes and subsequent rebounds), and other highly
unanticipated events that can lead to significant structural change.

¢ GARCH models often fail to fully capture the fat tails observed in asset
return series. Heteroscedasticity explains some of the fat tail behavior, but
typically not all of it. To compensate for this limitation, fat-tailed
distributions such as Student’s t have been applied to GARCH modeling.
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The GARCH Toolbox

14

The GARCH Toolbox, combined with MATLAB and the Optimization and
Statistics Toolboxes, provides an integrated computing environment for
modeling the volatility of univariate economic time series. The GARCH
Toolbox uses a general ARMAX conditional mean model combined with a
conditional variance model of GARCH, GJR, or EGARCH form to perform
simulation, forecasting, and parameter estimation of univariate time series in
the presence of conditional heteroscedasticity. Supporting functions perform
tasks such as pre- and postestimation diagnostic testing, hypothesis testing of
residuals, model order selection, and time-series transformations. Graphics
capabilities let you plot correlation functions and visually compare matched
innovations, volatility, and return series.

More specifically, you can

® Perform Monte Carlo simulation of univariate returns, innovations, and
conditional volatilities

® Specify general ARMAX conditional mean models combined with conditional
variance models of GARCH, GJR, or EGARCH form for univariate asset
returns

* Estimate parameters of general ARMAX conditional mean models combined
with conditional variance models of GARCH, GJR, or EGARCH form

® Generate minimum mean square error forecasts of the conditional mean and
conditional variance of univariate return series

® Perform pre- and postestimation diagnostic and hypothesis testing, such as
Engle’s ARCH test, Ljung-Box Q-statistic test, likelihood ratio tests, and
AIC/BIC model order selection

¢ Perform graphical correlation analysis, including autocorrelation, cross
correlation, and partial autocorrelation

® Convert price/return series to return/price series, and transform finite-order
ARMA models to infinite-order AR and MA models
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Software Requirements and Compatibility

The GARCH Toolbox requires the Statistics and Optimization Toolboxes.
However, you need not read those manuals before reading this one.

The GARCH Toolbox Version 2.0 is compatible with Release 13, including
MATLAB Version 6.5, Statistics Toolbox Version 4.0, and Optimization
Toolbox 2.2, and later.
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Expected Background

1-6

This guide is a practical introduction to the GARCH Toolbox. In general, it
assumes you are familiar with the basic concepts of General Autoregressive
Conditional Heteroscedasticity (GARCH) modeling.

In designing the GARCH Toolbox and this manual, we assume your title is
similar to one of these:

® Analyst, quantitative analyst

¢ Risk manager

® Portfolio manager

¢ Fund manager, asset manager

¢ Economist

¢ Financial engineer

® Trader

® Student, professor, or other academic

We also assume your background, education, training, and responsibilities
match some aspects of this profile:

¢ Finance, economics, perhaps accounting

* Engineering, mathematics, physics, other quantitative sciences

® Bachelor’s degree minimum; MS or MBA likely; Ph.D. perhaps; CFA

e Comfortable with probability theory, statistics, and algebra

® Understand linear or matrix algebra, calculus, and differential equations
® Previously done traditional programming (C, Fortran, etc.)

® Responsible for instruments or analyses involving large sums of money
¢ Perhaps new to MATLAB
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Technical Conventions

This user’s guide uses the following definitions and descriptions. See the
“Glossary” for general term definitions.

Array and Vector Size

The size of an array describes the dimensions of the array. If a matrix has m
rows and n columns, its size is m-by-n. If two arrays are the same size, their
dimensions are the same.

Iftwo vectors are of the same size, then they not only have the same length, but
they also have the same orientation.

Vector Length

The length of a vector indicates only the number of elements in the vector. If
the length of a vector is n, it could be a 1-by-n (row) vector or an n-by-1 (column)
vector. Two vectors of length n, one a row vector and the other a column vector,
do not have the same size.

Time-Series Arrays

The concept of a time series, an ordered set of observations stored in a
MATLAB array, is used throughout this User's Guide. The rows of a
time-series array correspond to time-tagged indices, or observations, and the
columns correspond to sample paths, independent realizations, or individual
time series. In any given column, the first row contains the oldest observation
and the last row contains the most recent observation. In this representation,
a time-series array is said to be column-oriented.

Note Although some GARCH Toolbox functions can process univariate
time-series arrays formatted as either row or column vectors, many functions
now strictly enforce the column-oriented representation of a time series.
Because of this and to avoid ambiguity, you should format single realizations
of univariate time series as column vectors. Representing a time series in
column-oriented format will avoid misinterpretation of the arguments, and
will also make it easier for you to display data in the command window.

1-7
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Conditional vs. Unconditional

The term conditional implies explicit dependence on a past sequence of
observations. The term unconditional is more concerned with long-term
behavior of a time series and assumes no explicit knowledge of the past.

Precision

The GARCH Toolbox performs all its calculations in double precision. Select
File -> Preferences -> Command Window -> Text Display to set the numeric
format for your displays. The default is short.

Prices, Returns, and Compounding

The GARCH Toolbox assumes that time-series vectors and matrices are
time-tagged series of observations. If you have a price series, the toolbox lets
you convert it to a return series using either continuous compounding or
periodic compounding.

If you denote successive price observations made at times ¢ and ¢ + 1 as P, and
.Pt 1> respectivgly, continuous compounding transforms a price series {P,}
into a return series {y,} as

P
y, = 1og—"‘P+;—1 = logP, , ; —logP, (1-1)

Periodic compounding defines the transformation as

1t+1_1t 1t+1
= = -1 1-2
Vi Pt Pt ( )

Continuous compounding is the default compounding method of the GARCH
Toolbox, and is the preferred method for most of continuous-time finance. Since
GARCH modeling is typically based on relatively high frequency data

(i.e., daily or weekly observations), the difference between the two methods is
usually small. However, there are some toolbox functions whose results are
approximations for periodic compounding, but exact for continuous
compounding. If you adopt the continuous compounding default convention
when moving between prices and returns, all toolbox functions produce exact
results.
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Stationary and Nonstationary Time Series

The GARCH Toolbox assumes that return series are stationary processes. The
price-to-return transformation generally guarantees a stable data set for
GARCH modeling.

This figure illustrates an equity price series. In this case, it shows daily closing
values of the Nasdaq™ Composite Index (see “Data Sets” on page 1-11). Notice
that there appears to be no long-run average level about which the series
evolves. This is evidence of a nonstationary time series.

NASDAQ Daily Closing Values
5000 T T T =

45001
40001
3500

3000

Prices

2500

2000

1500+

10001

500 I L L L L L
1 507 1014 1518 2025 2529 3028

The following figure, however, illustrates the continuously compounded
returns associated with the same price series. In contrast, the returns appear
to be quite stable over time, and the transformation from prices to returns has
produced a stationary time series.

1-9
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NASDAQ Daily Returns

0.15

0.1f

Returns

Il Il Il Il Il
1 507 1014 1518 2025 2529 3027

The GARCH Toolbox assumes that return series are stationary processes. This

may seem limiting, but the price-to-return transformation is common and
generally guarantees a stable data set for GARCH modeling.

1-10
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Data Sets

The GARCH Toolbox documentation uses the following financial time series.
You can find them in the MAT-file garchdata.mat.

e “DEM2GBP” on page 1-11
* “NASDAQ” on page 1-12
* “NYSE” on page 1-12

DEM2GBP

The DEM2GBP series contains daily observations of the Deutschmark/British
Pound foreign exchange rate, i.e., an FX price series. The sample period is from
January 2, 1984, to December 31,1991, for a total of 1975 daily observations of
FX exchange rates.

The DEM2GBP price series is derived from the corresponding daily percentage
nominal returns for the Deutschemark/British Pound exchange rate computed
as

y, = 100In(P, , ;/P,) = 100[In(P, , ;) —In(P,)]

where P, is the bilateral Deutschmark/British Pound FX rate constructed from
the corresponding U.S. dollar rates. The original nominal returns, expressed in
percent, were originally published in Bollerslev and Ghysels [7].

You can also obtain the percentage returns data from the Journal of Business
and Economic Statistics (JBES) FTP site,
ftp://www.amstat.org/JBES_View/96-2-APR/bollerslev_ghysels/bollers
lev.sec41.dat.

The sample period discussed in the Bollerslev and Ghysels article is from
January 3, 1984, to December 31, 1991, for a total of 1974 observations of daily
percentage nominal returns. These returns, combined with an approximate
closing exchange rate from January 2, 1984, obtained from OANDA.com, The
Currency Site™ (http://www.oanda.com), allow an approximate
reconstruction of the corresponding FX closing price series.

This particular FX price series is included in the GARCH Toolbox
documentation because it has been promoted as an informal benchmark for
GARCH time-series software validation. See McCullough & Renfro [21], and
Brooks, Burke, & Persand [9] for details. Note that the estimation results

1-11
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published in these references are based on the original percentage returns. The
GARCH Toolbox presents the data as a price series merely to maintain
consistency with the other two datasets highlighted throughout this manual.

NASDAQ

The NASDAQ series contains daily closing values of the Nasdaq™ Composite
Index. The sample period is from January 2, 1990, to December 31, 2001, for a
total of 3028 daily equity index observations.

The Nasdaq Composite closing index values were downloaded directly from the
Market Data section of the Nasdaq™ web page,
http://www.marketdata.nasdaq.com/mr4b.html.

NYSE

The NYSE series contains daily closing values of the New York Stock
Exchange™ Composite Index. The sample period is from January 2, 1990, to
December 31, 2001, for a total of 3028 daily equity index observations of the
NYSE Composite Index.

The NYSE Composite Index daily closing values were downloaded directly
from the Market Information section of the NYSE™ web page,
http://www.nyse.com/marketinfo/marketinfo.html.
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“GARCH Overview” includes these sections:

Modeling of Financial Time Series
(p. 2-2)

Conditional Mean and Variance
Models (p. 2-6)

The Default Model (p. 2-12)

Primary Toolbox Functions (p. 2-13)

Analysis and Estimation Example
Using the Default Model (p. 2-15)

Discusses some general concepts related to the modeling of
financial time series.

Introduces the models you can use to describe conditional
mean and variance to the GARCH Toolbox.

Describes the GARCH Toolbox default conditional mean and
variance models.

Introduces the core functions you use to perform estimation,
simulation, and forecasting.

Uses the default model to examine the Deutschmark/British
Pound foreign exchange rate series.
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Modeling of Financial Time Series

2-2

This section discusses

¢ “Characteristics of Financial Time Series” on page 2-2
® “Correlation and Forecasting of Financial Time Series” on page 2-4

® “Serial Dependence in Innovations” on page 2-4

Characteristics of Financial Time Series

GARCH models are designed to capture certain characteristics that are
commonly associated with financial time series:

® Fat tails

® Volatility clustering

® Leverage effects

Probability distributions for asset returns often exhibit fatter tails than the
standard normal, or Gaussian, distribution. The fat tail phenomenon is known
as excess kurtosis. Time series that exhibit a fat tail distribution are often
referred to as leptokurtic. The red (dashed) line in the following figure
illustrates excess kurtosis. The blue (solid) line shows a Gaussian distribution.

0.4

0.351

0.251

0.15¢

0.1f
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Modeling of Financial Time Series

In addition, financial time series usually exhibit a characteristic known as
volatility clustering, in which large changes tend to follow large changes, and
small changes tend to follow small changes. In either case, the changes from
one period to the next are typically of unpredictable sign. Large disturbances,
positive or negative, become part of the information set used to construct the
variance forecast of the next period's disturbance. In this manner, large shocks
of either sign are allowed to persist, and can influence the volatility forecasts
for several periods.

Volatility clustering, or persistence, suggests a time-series model in which
successive disturbances, although uncorrelated, are nonetheless serially
dependent. The following figure illustrates this characteristic. It shows the
daily returns of the New York Stock Exchange™ Composite Index (see “Data
Sets” on page 1-11).

NYSE Daily Returns

0.06 T

Return

-0.04- 8

-0.06 7

-0.08 1 1 1 1 1
1 507 1014 1518 2025 2529 3027

Volatility clustering (a type of heteroscedasticity) accounts for some but not all
of the fat tail effect (or excess kurtosis) typically observed in financial data. A
part of the fat tail effect can also result from the presence of non-Gaussian
asset return distributions that just happen to have fat tails, such as
Student’s t.

Finally, certain classes of asymmetric GARCH models are also capable of
capturing the so-called leverage effect, in which asset returns are often
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observed to be negatively correlated with changes is volatility. That is, for
certain asset classes, most notably equities but excluding foreign exchange,
volatility tends to rise in response to lower than expected returns and to fall in
response to higher than expected returns. Such an effect suggests GARCH
models that include an asymmetric response to positive and negative surprises.

Correlation and Forecasting of Financial Time Series

If you treat a financial time series as a sequence of random observations, this
random sequence, or stochastic process, may exhibit some degree of correlation
from one observation to the next. You can use this correlation structure to
predict future values of the process based on the past history of observations.
Exploiting the correlation structure, if any, allows you to decompose the time
series into a deterministic component (i.e., the forecast), and a random
component (i.e., the error, or uncertainty, associated with the forecast).

The following equation uses these components to represent a univariate model
of an observed time series y, .

¥, = fE-1LX)+¢g
In this equation,

® f(t —1,X) represents the forecast, or deterministic component, of the current
return as a function of any information known at time ¢ —1, including past
innovations {€, 1, & _g, ...}, past observations {y,_1,y,_o, ...}, and any
other relevant explanatory time-series data, X .

® &, is the random component. It represents the innovation in the mean of y, .

Note that you can also interpret the random disturbance, or shock, €, , as the
single-period-ahead forecast error.

Serial Dependence in Innovations

A common assumption when modeling financial time series is that the forecast
errors (i.e., the innovations) are zero-mean random disturbances uncorrelated
from one period to the next.

E{g} =0

0 tzT

E{g.er}
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Although successive innovations are uncorrelated, they are not independent.
In fact, an explicit generating mechanism for a GARCH innovations process,

(g}, is
& = Osz (2-1)

where o, is the conditional standard deviation derived from one of the
conditional variance equations shown in “Conditional Variance Models” on
page 2-6.

z, is a standardized, independent, identically distributed (i.i.d.) random draw
from some specified probability distribution. The GARCH Toolbox provides two
distributions for modeling GARCH processes: Gaussian and Student’s t.

Eq. (2-1) illustrates that a GARCH innovations process {€;} simply rescales
ani.i.d process {z,} such that the conditional standard deviation incorporates
the serial dependence of the conditional variance equation. Equivalently,

Eq. (2-1) also states that a standardized GARCH disturbance, €,/0;, is itself
an i.i.d. random variable z, .

Notice that GARCH models are consistent with various forms of efficient
market theory, which state that asset returns observed in the past cannot
improve the forecasts of asset returns in the future. Since GARCH innovations
{€;} are serially uncorrelated, GARCH modeling does not violate efficient
market theory.
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Conditional Mean and Variance Models

This section describes the conditional mean and variance models that the
GARCH Toolbox supports and offers some comments to help clarify their
descriptions.

¢ “Conditional Mean Model” on page 2-6

® “Conditional Variance Models” on page 2-6

® “Comments on the Models” on page 2-9

Conditional Mean Model

This general ARMAX(R,M,Nx) model for the conditional mean applies to all
variance models.

Nx

R M
y=C+ Z Giye_; + &+ Z 06, + Z BrX(t, k) (2-2)
i=1 j=1 k=1

with autoregressive coefficients {{;}, moving average coefficients {0 it
innovations {&;}, and returns {y,}. X is an explanatory regression matrix in
which each column is a time series and X(¢, k) denotes the ¢ th row and % th
column.

The eigenvalues {A;} associated with the characteristic AR polynomial
R R-1 R-2
T S T ).
must lie inside the unit circle to ensure stationarity. Similarly, the eigenvalues
associated with the characteristic MA polynomial

M-2

AM+61kM_1+62x +...+0;,

must lie inside the unit circle to ensure invertibility.

Conditional Variance Models
The conditional variance of the innovations, Gtz , 1s by definition

2 2
Var, (v, = E;_4(&;) = o, (2-3)



Conditional Mean and Variance Models

The key insight of GARCH lies in the distinction between conditional and
unconditional variances of the innovations process {&;} . The term conditional
implies explicit dependence on a past sequence of observations. The term
unconditional is more concerned with long-term behavior of a time series and
assumes no explicit knowledge of the past.

The various GARCH models characterize the conditional distribution of €; by
imposing alternative parameterizations to capture serial dependence on the
conditional variance of the innovations. “Comments on the Models” on page 2-9
further defines the conditional variance models.

GARCH(P,Q) Conditional Variance

The general GARCH(P,Q) model for the conditional variance of innovations is

p Q
2 2 2
c, = K+ Z GG+ ZAJ-st_j (2-4)
i=1 j=1

with constraints

P Q
> G+ DA<l
=1

i=1
K>0
G;>0 i=12,..,P
Ajz 0 Jj=12,..@Q

Note that the basic GARCH(P,Q) model is a symmetric variance process, in
that the sign of the disturbance is ignored.

GJR(P,Q) Conditional Variance

The general GJR(P,Q) model for the conditional variance of the innovations
with leverage terms is

P Q Q
2 2 2 - 2
o, = K+ Z G,o, 1+ ZAjst_j+ ZLjSt_jet_j (2-5)
i=1 Jj=1 J-1
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where

- 1 €_;<0
St—j = { e
0 otherwise

and

P Q Q
ICEDIV IR

i=1 Jj=1 Jj=1
K >0
G;>20 i=12,..,P
Ajzo =12, ..,Q
AJ.+LJ.20 j=12..,@Q

EGARCH(P,Q) Conditional Variance

The general EGARCH(P,Q) model for the conditional variance of the

innovations with leverage terms and an explicit probability distribution
assumption is

P Q
g, € _ 4 €t
et - vt z afld gfled)) yo(2)
=1 t=J =y Jj=1 "
where
19/ Gaussian
v—1
E{z, |} =E |8—ti|} = F(_)
e 'J| ) (Gt —j v=2 2 Student’s t
")
2

with degrees of freedom v >2.
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EGARCH(P,Q) models are treated as ARMA(P,Q) models for logcf . Thus, the
stationarity constraint for EGARCH(P,Q) models is included by ensuring that
the eigenvalues of the characteristic polynomial

P-2

WFoapn P toapf 2 - —6,

are inside the unit circle.

Note that EGARCH models are fundamentally different from GARCH and GJR
models in that the standardized innovation, z,, serves as the forcing variable
for both the conditional variance and the error. GARCH and GJR models allow
for volatility clustering (i.e., persistence) by a combination of the G; and A;
terms, whereas persistence in EGARCH models is entirely captured by the G,
terms.

Comments on the Models

The econometrics literature is often vague and lacks consensus regarding the
exact definition of any particular class of GARCH model. As a result, there are
often discrepancies among software vendors, researchers, and references as to
the exact functional form, or parameter constraints, or both, of almost all
GARCH models. To help you reconcile some of these discrepancies, a few
comments are useful:

¢ Although the functional form of a GARCH(P,Q) model (Eq. (2-4)) is quite
standard, alternative positivity constraints exist. However, these
alternatives involve additional nonlinear inequalities that are difficult to
impose in practice, and do not affect the GARCH(1,1) model, which is by far
the most common. In contrast, the standard linear positivity constraints
imposed by the GARCH Toolbox are commonly used, and are
straightforward to implement.

® Many references and software vendors refer to the GJR(P,Q) model
(Eq. (2-5)) as a TGARCH, or Threshold GARCH, model. However, others
make a very clear distinction between GJR(P,Q) and TGARCH(P,Q) models:
a GJR(P,Q) model is a recursive equation for the conditional variance,
whereas a TGARCH(P,Q) model is the identical recursive equation for the
conditional standard deviation (see, for example, Hamilton [18] page 669,
Bollerslev, et. al. [6] page 2970). Furthermore, additional discrepancies exist
regarding whether or not to allow both negative and positive innovations to
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affect the conditional variance process. The GJR(P,Q) model included in the
GARCH Toolbox is relatively standard.

® The manner in which the GARCH Toolbox parameterizes GARCH(P,Q) and
GJR(P,Q) models, Eq. (2-4) and Eq. (2-5), including constraints, allows you
to interpret a GJR(P,Q) model as a straightforward extension of a
GARCH(P,Q) model. Equivalently, you can interpret a GARCH(P,Q) model
as a restricted GJR(P,Q) model with zero leverage terms. This latter
interpretation is convenient for, among other things, estimation and
hypothesis testing via likelihood ratios.

¢ For GARCH(P,Q) and GJR(P,Q) models, the lag lengths P and @, as well as
the magnitudes of the coefficients G, and A ;, determine the extent to which
disturbances persist. These values then determine the minimum amount of
presample data needed to initiate the simulation and estimation processes.
Note that persistence in EGARCH models is entirely captured by the G,
terms.

e Although the functional form of an EGARCH(P,Q) model (Eq. (2-6)) is
relatively standard, it is not the same as Nelson's original (see Nelson [22]).
Many forms of EGARCH(P,Q) models exist. Another popular form is

P Q@ |
g _i{+Lzg, ;
2 2 t—J| jZt—J
logo, = k+ Z G;logo, _; + ZAJ{ o, }
i=1 j=1

This EGARCH(P,Q) model form appears to offer an advantage in that it does
not explicitly make any assumptions about the conditional probability
distribution (i.e., whether the distribution of z, = (&;/0;) is Gaussian or
Student’s t). However, this is not entirely true. Although no distribution is
explicitly assumed in the above equation, generally such an assumption is
required for forecasting as well as Monte Carlo simulation in the absence of
user-specified presample data. In fact, the above equation can easily be
rearranged to highlight the probability distribution.

The particular form of the EGARCH(P,Q) model, Eq. (2-6), implemented in
the GARCH Toolbox is selected because it closely resembles Nelson's original
form and is widely used.

¢ Although EGARCH(P,Q) models require no parameter constraints to ensure
positive conditional variances, stationarity constraints are necessary. Since
an EGARCH(P,Q) model is treated as an ARMA(P,Q) model for the
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logarithm of the conditional variance, the GARCH Toolbox imposes
non-linear constraints on the G; coefficients to ensure that the eigenvalues
of the characteristic polynomial are all inside the unit circle (see, for
example, page 2969 of Bollerslev, Engle, and Nelson [6], and page 12 of
Bollerslev, Chou, and Kroner [5]).

The EGARCH(P,Q) and GJR(P,Q) models, Eq. (2-6) and Eq. (2-5), are both
asymmetric models designed to capture the leverage effect, or negative
correlation, between asset returns and volatility. Both the EGARCH(P,Q)
and GJR(P,Q) models include leverage terms that explicitly take into
account the sign as well as the magnitude of the innovation noise term.
Although both models are designed to capture the leverage effect, the
manner in which they do so is markedly different.

For EGARCH(P,Q) models, the leverage coefficients L; are applied to the
actual innovations €;_; . For GJR(P,Q) models, the leverage coefficients
enter the model through a Boolean indicator, or dummy, variable. For this
reason, if the leverage effect does indeed hold, the leverage coefficients L;
should be negative for EGARCH(P,Q) models and positive for GJR(P,Q)
models. This is in contrast to GARCH(P,Q) models, in which the sign of the
innovation is ignored.

Although GARCH(P,Q) and GJR(P,Q) models, Eq. (2-4) and Eq. (2-5),
include terms related to the model innovations, €, = 2,6, , EGARCH(P,Q)
models, Eq. (2-6), include terms related to the standardized innovations,

z, = &/0; , such that z, acts as the forcing variable for both the
conditional variance and the error. In this respect, EGARCH(P,Q) models
are fundamentally unique.

Generally, there are no asymmetries in foreign exchange rates, and therefore
asymmetric EGARCH(P,Q) and GJR(P,Q) conditional variance models are
often inappropriate for modeling such return series.
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The Default Model

2-12

The GARCH Toolbox default model is the simple (yet common) constant mean
model with GARCH(1,1) Gaussian innovations, based on Eq. (2-2) and
Eq. (2-4).

¥, = C+g (2-7)

2 2 2
Gt = K+G10t_1 +A18t_1 (2'8)

In the conditional mean model, Eq. (2-7), the returns, y,, consist of a simple
constant, plus an uncorrelated, white noise disturbance, €, . This model is often
sufficient to describe the conditional mean in a financial return series. Most
financial return series do not require the comprehensiveness that an ARMAX
model provides.

In the conditional variance model, Eq. (2-8), the variance forecast, Gt2 , consists
of a constant plus a weighted average of last period's forecast, 6, _;, and last
period's squared disturbance, €,_ . Although financial return series, as
defined in Eq. (1-1) and Eq. (1-2), typically exhibit little correlation, the
squared returns often indicate significant correlation and persistence. This
implies correlation in the variance process, and is an indication that the data
is a candidate for GARCH modeling.

Although simplistic, the default model shown in Eq. (2-7) and Eq. (2-8) has
several benefits:

¢ It represents a parsimonious model that requires you to estimate only four
parameters (C, K, G;,and A ). According to Box and Jenkins [8], the fewer
parameters to estimate, the less that can go wrong. Elaborate models often
fail to offer real benefits when forecasting (see Hamilton [18], page 109).

® The simple GARCH(1,1) model captures most of the variability in most
return series. Small lags for P and @ are common in empirical applications.
Typically, GARCH(1,1), GARCH(2,1), or GARCH(1,2) models are adequate
for modeling volatilities even over long sample periods (see Bollerslev, Chou,
and Kroner [5], pages 10 and 22).
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Primary Toolbox Functions

Use of the GARCH Toolbox focuses on three high-level processing functions:
garchfit, garchpred, and garchsim, for model estimation, forecasting, and
Monte Carlo simulation, respectively. A fourth function, garchinfer, infers the
innovations and conditional standard deviations via inverse filtering, and is
closely related to garchfit in that they both call the appropriate objective
function.

These functions use a GARCH specification structure to share information
about the specified model. The specification structure contains the model
orders for the chosen conditional mean and variance models, and the
parameters for those models. All these functions accept a specification
structure as input, but only garchfit can update the structure and provide it
as an output. (See “GARCH Specification Structure” on page 3-1 for detailed
information about the structure.)

An analysis process using real-world data might involve calling these
processing functions:

garchfit Estimates the model parameters. garchfit can accept a
specification structure as an input. If you provide only the
model orders for the chosen conditional mean and variance
model, garchfit populates it with the coefficients resulting
from the estimation process. If you provide, in addition, valid
coefficients, garchfit uses them as initial estimates that are
refined by the estimation process. If you provide no
specification structure, garchfit assumes the default model
(see “The Default Model” on page 2-12).

In all cases, garchfit returns an updated specification
structure, which encapsulates parameter estimates. This
output structure is of the same form as the input structure,
and you can use it as an input for further modeling.
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garchpred  Forecasts returns and conditional standard deviations. It
accepts as input the specification structure provided by the
estimation engine garchfit. You can also use garchpred to
forecast volatility of asset returns over multiperiod holding
intervals, or to forecast the standard errors of conditional
mean forecasts.

garchsim Simulates one or more sample paths for the return series,
innovations, and conditional standard deviation processes, for
the specified conditional mean and variance model. You can
use these sample paths to perform Monte Carlo simulation of a
given process.
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Analysis and Estimation Example Using the Default Model

The example in this section uses the GARCH Toolbox default model to model a
foreign exchange series. Specifically, the example explores

¢ “Preestimation Analysis” on page 2-15

¢ “Parameter Estimation” on page 2-23

® “Postestimation Analysis” on page 2-26

Note Due to platform differences, the estimation results you obtain when
you recreate this example may differ slightly from those shown in the text.
These differences will propagate through any subsequent examples that use
the estimation results as input. These differences, however, do not affect the
outcome of the examples.

For more information see “Model Selection and Analysis” on page 8-1.

Preestimation Analysis

When estimating the parameters of a composite conditional mean/variance
model, you may occasionally encounter convergence problems. For example,
the estimation may appear to stall, showing little or no progress. It may
terminate prematurely prior to convergence. Or, it may converge to an
unexpected, suboptimal solution.

You can avoid many of these difficulties by performing a prefit analysis. This
section uses an example to show techniques such as plotting the return series,
and examining the ACF and PACF, as well as some preliminary tests,
including Engle’s ARCH test and the Q-test. The goal is to avoid convergence
problems by selecting the simplest model that adequately describes your data.

The preestimation analysis loads the data in the form of a price series, then
converts the price series to a return series. It checks the return series for
correlation, and quantifies the correlation.

1 Load the raw data: daily exchange rate. Start by loading the MATLAB
binary file garchdata.mat, and examining its contents using the Workspace
Browser.
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2-16

load garchdata

<) Workspace F =10 x|

File Edit Miew Web ‘Window Help

ﬁ- E | H | ﬁ Stadc:IElase VI

Name Size Eytes|Classz

@DEHZGBP 1975x1 15500 | double array
@HASDAD 3028x1 24224 | double array
@H‘ISE 3028x1 24224 | double array

The data consists of three single-column vectors of different lengths,
DEM2GBP, NASDAQ, and NYSE. Each vector is a separate price series for the
named group. (See “Data Sets” on page 1-11 for more information about
these data sets.) You can also use the whos command to see all the variables
in the current workspace.

whos
Name Size Bytes Class
DEM2GBP 1975x1 15800 double array
NASDAQ 3028x1 24224 double array
NYSE 3028x1 24224 double array

Grand total is 8031 elements using 64248 bytes

This example uses DEM2GBP, which contains daily price observations of the
Deutschemark/British Pound foreign exchange rate. Use the MATLAB plot
function to examine the data.

plot([0:1974],DEM2GBP)

set(gca, 'XTick',[1 659 1318 1975])

set(gca, 'XTickLabel',{'Jdan 1984' 'Jan 1986' 'Jan 1988'
‘dan 1992'})
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ylabel('Exchange Rate')
title('Deutschmark/British Pound Foreign Exchange Rate')

Note The set command allows you to set object properties. This example
uses it to set the position of and relabel the x-axis ticks of the current figure.

Deutschmark/British Pound Foreign Exchange Rate
4.2 T T

Exchange Rate
w w
N o

w
)

2.8

2.6 ; ! ;
Jan 1984 Jan 1986 Jan 1988 Jan 1992

2 Convert the prices to a return series. Because GARCH modeling assumes
a return series, you need to convert the prices to returns. Use the utility
function price2ret, and then examine the result.

dem2gbp = price2ret (DEM2GBP);

The workspace information shows both the 1975-point price series and the
1974-point return series derived from it.

Now, use the MATLAB plot function to see the return series. Notice the
presence of volatility clustering in the raw return series.

plot(dem2gbp)
set(gca, 'XTick',[1 659 1318 1975])
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set(gca, 'XTickLabel',{'Jan 1984' 'Jan 1986' 'dJan 1988'
‘dan 1992'})

ylabel('Return')

title('Deutschmark/British Pound Daily Returns')

Deutschmark/British Pound Daily Returns
0.04 T T

0.031 b

Return

-0.011 7

-0.021 7

—0.03 \ \ \
Jan 1984 Jan 1986 Jan 1988 Jan 1992

3 Check for correlation in the return series. You can check qualitatively for
correlation in the raw return series by calling the functions autocorr and
parcorr to examine the sample autocorrelation function (ACF) and
partial-autocorrelation (PACF) function, respectively.

The autocorr function computes and displays the sample ACF of the
returns, along with the upper and lower standard deviation confidence
bounds, based on the assumption that all autocorrelations are zero beyond
lag zero.

autocorr (dem2gbp)
title('ACF with Bounds for Raw Return Series')
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ACF with Bounds for Raw Return Series
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Similarly, the parcorr function displays the sample PACF with upper and
lower confidence bounds.

parcorr(dem2gbp)
title('PACF with Bounds for Raw Return Series')
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PACF with Bounds for Raw Return Series
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Since the individual ACF values can have large variances and can also be
autocorrelated, you should view the sample ACF and PACF with care (see
Box, Jenkins, Reinsel [8], pages 34 and 186). However, as preliminary
identification tools, the ACF and PACF provide some indication of the broad
correlation characteristics of the returns. From these figures for the ACF
and PACF, there is very little indication that you need to use any correlation
structure in the conditional mean. Also, notice the similarity between the

graphs.

Check for correlation in the squared returns. Although the ACF of the
observed returns exhibits little correlation, the ACF of the squared returns
may still indicate significant correlation and persistence in the second-order
moments. Check this by plotting the ACF of the squared returns.

autocorr(dem2gbp.~2)
title('ACF of the Squared Returns')
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ACF of the Squared Returns
T

0.6 7

Sample Autocorrelation
o
N
:
|

0.2r ° () 1
[ o B
A 20 A A ARDRPE. IO 2 A K. RS I |
0 | T |
-0.2 : : :
0 5 10 15 20
Lag

This figure shows that, although the returns themselves are largely
uncorrelated, the variance process exhibits some correlation. This is
consistent with the earlier discussion in the section, “The Default Model” on
page 2-12. Note that the ACF shown in this figure appears to die out slowly,
indicating the possibility of a variance process close to being nonstationary.

Note The syntax in the preceding command, an operator preceded by the dot
operator (.), indicates that the operation is performed on an
element-by-element basis. In the preceding command, dem2gbp . ~2 indicates
that each element of the vector dem2gbp is squared.

5 Quantify the correlation. You can quantify the preceding qualitative
checks for correlation using formal hypothesis tests, such as the
Ljung-Box-Pierce Q-test and Engle's ARCH test.

The function 1bgtest implements the Ljung-Box-Pierce Q-test for a
departure from randomness based on the ACF of the data. The Q-test is most
often used as a postestimation lack-of-fit test applied to the fitted
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innovations (i.e., residuals). In this case, however, you can also use it as part
of the prefit analysis because the default model assumes that returns are
just a simple constant plus a pure innovations process. Under the null
hypothesis of no serial correlation, the Q-test statistic is asymptotically
Chi-Square distributed (see Box, Jenkins, Reinsel [8], page 314).

The function archtest implements Engle's test for the presence of ARCH
effects. Under the null hypothesis that a time series is a random sequence of
Gaussian disturbances (i.e., no ARCH effects exist), this test statistic is also
asymptotically Chi-Square distributed (see Engle [12], pages 999-1000).

Both functions return identical outputs. The first output, H, is a Boolean
decision flag. H = 0 implies that no significant correlation exists (i.e., do not
reject the null hypothesis). H = 1 means that significant correlation exists
(i.e., reject the null hypothesis). The remaining outputs are the P-value
(pvalue), the test statistic (Stat), and the critical value of the Chi-Square
distribution (Criticalvalue).

Ljung-Box-Pierce Q-Test. Using 1bqgtest, you can verify, at least
approximately, that no significant correlation is present in the raw returns
when tested for up to 10, 15, and 20 lags of the ACF at the 0.05 level of
significance.

[H,pValue,Stat,Criticalvalue] = ...
lbgtest (dem2gbp-mean (dem2gbp),[10 15 20]',0.05);
[H pValue Stat CriticalValue]

ans =
0 0.7278 6.9747 18.3070
0 0.2109 19.0628 24,9958
0 0.1131 27.8445 31.4104

However, there is significant serial correlation in the squared returns when
you test them with the same inputs.

[H,pValue,Stat,Criticalvalue] = ...
lbgtest ((dem2gbp-mean(dem2gbp))."2,[10 15 20]',0.05);
[H pValue Stat CriticalValue]
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ans =
1.0000 0 392.9790 18.3070
1.0000 0 452.8923 24.9958
1.0000 0 507.5858 31.4104

Engle's ARCH Test. You can also perform Engle’s ARCH test using the
function archtest. This test also shows significant evidence in support of
GARCH effects (i.e., heteroscedasticity).

[H,pValue,Stat,CriticalvValue] = ...
archtest(dem2gbp-mean(dem2gbp),[10 15 20]',0.05);
[H pValue Stat CriticalValue]

ans =
1.0000 0 192.3783 18.3070
1.0000 0 201.4652 24.9958
1.0000 0 203.3018 31.4104

Each of these examples extracts the sample mean from the actual returns.
This is consistent with the definition of the conditional mean equation of the
default model, in which the innovations process is €, = y,—C, and C is the
mean of y, .

Parameter Estimation

This section continues the example begun in “Preestimation Analysis” on
page 2-15. It estimates model parameters, then examines the estimated
GARCH model.

1 Estimate the Model Parameters. The presence of heteroscedasticity,
shown in the previous analysis, indicates that GARCH modeling is
appropriate. Use the estimation function garchfit to estimate the model
parameters. Assume the default GARCH model described in the section
“The Default Model” on page 2-12. This only requires that you specify the
return series of interest as an argument to the function garchfit.
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Note Because the default value of the Display parameter in the specification
structure is 'on', garchfit prints diagnostic optimization and summary
information to the command window in the example below. (See fmincon in
the Optimization Toolbox for information about the output of the Display
parameter.)

[coeff,errors,LLF,innovations,sigmas,summary] =

garchfit (dem2gbp);
9,9,0,0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
0707070700000 0000000000000 OO0 OO OOV OOOOOOOOOOOOOOOOOOOOVOOO 000000
Diagnostic Information

Number of variables: 4

Functions

Objective: garchllfn

Gradient: finite-differencing
Hessian: finite-differencing (or Quasi-Newton)
Nonlinear constraints: armanlc

Gradient of nonlinear constraints: finite-differencing
Constraints

Number of nonlinear inequality constraints: O

Number of nonlinear equality constraints: 0

Number of linear inequality constraints: 1
Number of linear equality constraints: 0
Number of lower bound constraints: 4
Number of upper bound constraints: 4

Algorithm selected
medium-scale

End diagnostic information

max Directional First-order
Iter F-count f(x) constraint Step-size derivative optimality Procedure
1 28 -7916.01 -2.01e-006 7.63e-006 857 1.42e+005
2 36 -7959.65 -1.508e-006 0.25 389 9.8e+007
3 45 -7963.98 -3.113e-006 0.125 131 5.29e+006
4 52 -7965.59 -1.586e-006 0.5 55.9 4.45e+007
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o ~NO O

9
10
11
12
13
14
15
16
17
18
19
20
21
22

65

74

83

90
103
111
120
128
134
140
146
154
160
166
173
179
199
213

-7966.9
-7969.46
-7973.56
-7982.09
-7982.13
-7982.53
-7982.56
-7983.69
-7983.91
-7983.98

-7984
-7984
-7984
-7984
-7984
-7984
-7984
-7984

-1.574e-006 0.00781 101 1.46e+007
-2.201e-006 0.125 14.9 2.77e+007
-2.663e-006 0.125 36.6 1.45e+007
-1.332e-006 0.5 -6.39 5.59e+006
-1.399e-006 0.00781 6.49 1.32e+006
-1.049e-006 0.25 12.5 1.87e+007
-1.186e-006 0.125 3.72 3.8e+006
-1.11e-006 0.25 0.184 4.91e+006
-7.813e-007 1 0.732 1.22e+006
-9.265e-007 1 0.186 1.17e+006
-8.723e-007 1 0.0427 9.52e+005
-8.775e-007 0.25 0.0152 6.33e+005
-8.75e-007 1 0.00197 6.98e+005
-8.763e-007 1 0.000931 7.38e+005
-8.759e-007 0.5 0.000469 7.37e+005
-8.761e-007 1 0.00012 7.22e+005
-8.761e-007 -6.1e-005 0.0167 7.37e+005 Hessian modified twice
-8.761e-007 0.00391 0.00582 7.26e+005 Hessian modified twice

Optimization terminated successfully:
Search direction less than 2*options.TolX and
maximum constraint violation is less than options.TolCon

No Active Constraints

2 Examine the Estimated GARCH Model. Now that the estimation is

complete, you can display the parameter estimates and their standard
errors using the function garchdisp,

garchdisp(coeff,errors)
Mean: ARMAX(0,0,0); Variance: GARCH(1,1)

Conditional Probability Distribution: Gaussian
Number of Parameters Estimated: 4

Standard T
Parameter Value Error Statistic
C -6.1919e-005 8.4331e-005 -0.7342
K 1.0761e-006 1.323e-007 8.1341
GARCH (1) 0.80598 0.016561 48.6685
ARCH (1) 0.15313 0.013974 10.9586

If you substitute these estimates in the definition of the default model,
Eq. (2-7) and Eq. (2-8), the estimation process implies that the constant
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conditional mean/GARCH(1,1) conditional variance model that best fits the
observed data is

Yy, = —6.1919e-005 + ¢,

G, = 1.0761e-006 + 0.80598G._; +0.15313¢,_;

where G; = GARCH(1) = 0.80598 and A; = ARCH(1) = 0.15313.In
addition, C = C = -6.1919e-005and K = K = 1.0761e-006.

Postestimation Analysis

The postestimation analysis continues the example begun in “Preestimation
Analysis” on page 2-15 and continued in “Parameter Estimation” on page 2-23.
This part of the example starts by comparing the residuals, conditional
standard deviations, and returns. It then uses plots and quantitative
techniques to compare correlation of the standardized innovations.

1 Compare the Residuals, Conditional Standard Deviations, and Returns.
In addition to the parameter estimates and standard errors, garchfit also
returns the optimized log-likelihood function value (LLF), the residuals
(innovations), and conditional standard deviations (sigmas). Use the
function garchplot to inspect the relationship between the innovations (i.e.,
residuals) derived from the fitted model, the corresponding conditional
standard deviations, and the observed returns.

garchplot(innovations,sigmas,dem2gbp)
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Notice that both the innovations (top plot) and the returns (bottom plot)
exhibit volatility clustering. Also, notice that the sum,

G, +A; =0.80598 + 0.15313, is 0.95911, which is close to the integrated,
nonstationary boundary given by the constraints associated with Eq. (2-4).

Plot and Compare the Correlation of the Standardized Innovations.
Although the figure in step 1 shows that the fitted innovations exhibit
volatility clustering, if you plot the standardized innovations (the
innovations divided by their conditional standard deviation), they appear
generally stable with little clustering.

plot(innovations./sigmas)
ylabel('Innovation')
title('Standardized Innovations')
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Standardized Innovations
6 T

Innovation

0 500 1000 1500 2000

If you plot the ACF of the squared standardized innovations, they also show
no correlation.

autocorr((innovations./sigmas)."2)
title('ACF of the Squared Standardized Innovations')
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ACF of the Squared Standardized Innovations
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Now compare the ACF of the squared standardized innovations in this
figure to the ACF of the squared returns prior to fitting the default model
(See “Preestimation Analysis” on page 2-15, step 4). The comparison shows
that the default model sufficiently explains the heteroscedasticity in the raw
returns.

Quantify and Compare Correlation of the Standardized Innovations.
Compare the results below of the Q-test and the ARCH test with the results
of these same tests in the preestimation analysis. In the preestimation
analysis, both the Q-test and the ARCH test indicate rejection (H = 1 with
pvValue = 0) of their respective null hypotheses, showing significant
evidence in support of GARCH effects. In the postestimate analysis, using
standardized innovations based on the estimated model, these same tests
indicate acceptance (H = 0 with highly significant pvValues) of their
respective null hypotheses and confirm the explanatory power of the default
model.

[H, pvalue,Stat,CriticalValue] = ...

1bqtest((innovations./sigmas)."2,[10 15 20]',0.05);
[H pvalue Stat CriticalValue]
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ans =
0 0.5262 9.0626 18.3070
0 0.3769 16.0777 24.9958
0 0.6198 17.5072 31.4104

[H, pvalue, Stat, CriticalValue] = ...
archtest(innovations./sigmas,[10 15 20]',0.05);
[H pValue Stat CriticalValue]

ans =
0 0.5625 8.6823 18.3070
0 0.4408 15.1478  24.9958
0 0.6943 16.3557 31.4104
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GARCH Specification

Structure

“GARCH Specification Structure” includes these sections:

Introduction (p. 3-2)

Equation Variables and Parameter
Names (p. 3-4)

Examples of Specification Structures
(p. 3-5)

Reading and Writing Specification
Structures (p. 3-8)

Introduces the GARCH specification structure and explains
how the primary analysis and modeling functions operate on
the structure.

Associates the variables used in the model equations
(“Conditional Mean and Variance Models” on page 2-6) with
their corresponding parameters in the specification
structure.

Uses examples of specification structures to interpret their
contents.

Describes the creation and modification of a specification
structure, as well as the retrieval of values from it.
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Introduction

The GARCH Toolbox maintains the parameters that define a model and control
the estimation process in a specification structure.

For the default model (see “The Default Model” on page 2-12), garchfit can
create the specification structure and store the model orders and estimated
parameters in it. For more complex models, you must use the function
garchset to explicitly specify, in a specification structure, the conditional
variance model you want, the mean and variance model orders, and possibly
the initial coefficient estimates.

The primary analysis and modeling functions, garchfit, garchpred, and
garchsim, all operate on the specification structure. This table describes how
each function uses the specification structure.

Function Description Use of GARCH Specification Structure

garchfit Estimates the parameters of a Input. Optionally accepts a GARCH
conditional mean specification of  specification structure as input. If the
ARMAX form and a conditional structure contains the model orders (R, M, P, Q)
variance specification of GARCH, but no coefficient vectors (C, AR, MA, Regress, K,
GJR, or EGARCH form. ARCH, GARCH, Leverage), garchfit uses

maximum likelihood to estimate the
coefficients for the specified mean and
variance models. If the structure contains
coefficient vectors, garchfit uses them as
initial estimates for further refinement. If you
provide no specification structure, garchfit
assumes, and returns, a specification
structure for the default model (see “The
Default Model” on page 2-12).

Output. Returns a specification structure that
contains a fully specified ARMAX/GARCH
model.




Introduction

Function Description Use of GARCH Specification Structure

garchpred Provides Input. Requires a GARCH specification
minimum-mean-square-error structure that contains the coefficient vectors
(MMSE) forecasts of the for the model for which garchpred is to
conditional mean and standard forecast the conditional mean and standard
deviation of a return series, fora  deviation.
specified number of periods into  gyu¢put. garchpred does not modify or return
the future. the specification structure.

garchsim Uses Monte Carlo methods to Input. Requires a GARCH specification

simulates sample paths for return
series, innovations, and
conditional standard deviation
processes.

structure that contains the coefficient vectors
for the model for which garchsimis to
simulate sample paths.

Output. garchsim does not modify or return
the specification structure.

Note See the garchset function reference page for descriptions of all the
specification structure parameters.
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Equation Variables and Parameter Names

For the most part, the names of specification structure parameters that define
the ARMAX and GARCH models reflect the variable names of their
corresponding components in the conditional mean and variance model
equations (see “Conditional Mean and Variance Models” on page 2-6).

Conditional Mean Model

In the conditional mean model,

® R and M represent the order of the ARMA(R,M) conditional mean model.
® C represents the constant C.

* AR represents the R-element autoregressive coefficient vector ¢, .

® MA represents the M-element moving average coefficient vector 0 ;.

* Regress represents the regression coefficients 3 .

Unlike the other components of the conditional mean equation, X has no
representation in the GARCH specification structure. X is an optional matrix
of returns that some toolbox functions use as explanatory variables in the
regression component of the conditional mean. For example, X could contain
return series of a suitable market index collected over the same period as the
return series y . Toolbox functions that allow the use of a regression matrix
provide a separate argument by which you can specify it.

Conditional Variance Models

In the conditional variance models

® P and Qrepresent the order of the GARCH(P,Q), GJR(P,Q), or EGARCH(P,Q)
conditional variance model.

® K represents the constant K.

® GARCH represents the P-element coefficient vector G, .

® ARCH represents the Q-element coefficient vector Aj.

® | everage represents the Q-element leverage coefficient vector, Lj, for
asymmetric EGARCH(P,Q) and GJR(P,Q) models.
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Examples of Specification Structures

The following example shows the fields of the specification structure, coeff, for
the estimated default model from “Analysis and Estimation Example Using the
Default Model” on page 2-15. The term to the left of the colon (:) is the
parameter name.

coeff

coeff =
Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
Distribution: 'Gaussian'
C: -6.1919e-005
VarianceModel: 'GARCH'
P: 1
Q: 1
K: 1.0761e-006
GARCH: 0.8060
ARCH: 0.1531

When you display a specification structure, only the fields that are applicable
to the specified model are displayed. Notice that R = M = 0 for this model, and
so are not displayed.

By default, the Comment field shown above is automatically generated by
garchset and garchfit. It summarizes the ARMAX and GARCH models used
for the conditional mean and variance equations. You can use garchset to set
the value of the Comment field, but the value you give it will replace this
summary statement.

Following is the display for the MA(1)/GJR(1,1) estimated model from the
example “Specifying Presample Data” on page 5-19. Notice that
length(MA) = M, length(GARCH) = P, and length(ARCH) = Q.

coeff =
Comment: 'Mean: ARMAX(0,1,0); Variance: GJR(1,1)'
Distribution: 'Gaussian'

M: 1
C: 5.6403e-004
MA: 0.2501
VarianceModel: 'GJR'
P: 1
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Q:

K:

GARCH:
ARCH:
Leverage:
Display:

1
1.1907e-005
0.6945
0.0249
0.2454
'off'

If you had created the specification structure for the same MA(1)/GJR(1,1)
example, but had not yet estimated the model coefficients, this is what you
would see if you displayed the specification structure.

spec

garchset('VarianceModel', 'GJR','M',1,'P',1,'Q"',1,...

‘Display', 'off")

spec

Comment:
Distribution:
M:

C:

MA:
VarianceModel:
P:

Q:

K:

GARCH:

ARCH:
Leverage:
Display:

'Mean: ARMAX(0,1,?); Variance: GJR(1,1)'
'Gaussian'
1

[]

[]

'GJR'

1

1

[]

[]

[]

[]
"off'

The empty matrix symbols, [ ], indicate that these fields are required for the
specified model, but have not yet been assigned values. For the specification to
be complete, these fields must be assigned valid values. You can use garchset
to assign values, e.g., as initial parameter estimates, to these fields. You can
also pass such a specification structure to garchfit, which uses the
parameters it estimates to complete the model specification. You cannot pass
such a structure to garchsim, garchinfer, or garchpred. These functions
require complete specifications.



Examples of Specification Structures

Note See the garchset function reference page for descriptions of all the
specification structure fields.
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Reading and Writing Specification Structures

This section discusses

® “Creating and Modifying a Specification Structure” on page 3-8

® “Retrieving Specification Structure Values” on page 3-11

Creating and Modifying a Specification Structure

In general, you must use the function garchset to initially create a
specification structure that, at a minimum, contains the chosen variance model
and the mean and variance model orders. The only exception is the default
model, for which garchfit can create a specification structure. The model
parameters you provide must specify a valid model.

When you create a specification structure, you can specify both the conditional
mean and variance models. Alternatively, you can specify either the
conditional mean or the conditional variance model. If you do not specify both
models, garchset assigns default parameters to the one you did not specify. For
the conditional mean, the default is a constant ARMA(0,0,?) model. For the
conditional variance, the default is a constant GARCH(0,0) model. The
question mark (?) indicates that garchset doesn’t know if you intend to include
a regression component (see “Regression Components in Conditional Mean
Models” on page 7-1).

The following examples create specification structures and display the results.
Note that you only need to type the leading characters that uniquely identify
the parameter. As illustrated here, garchset ignores case for parameter
names.

The Default Model

This is a sampling of statements that all create specification structures for the
default model.

spec = garchset('R',0,'m',0,'P',1,'Q"',1);

spec = garchset('p',1,'Q',1);

spec garchset;



Reading and Writing Specification Structures

The output of each command is the same. The Comment field summarizes the

model. Because R =

spec =

Comment:
Distribution:
C:
VarianceModel:
P:

Q:

K:

GARCH:

ARCH:

ARMA(0,0)/GJR(1,1)

M =

0, the fields R, M, AR, and MA are not displayed.

‘Mean: ARMAX(0,0,7);
'Gaussian'

[]

'"GARCH'

1

1

[]

[]

[]

Variance: GARCH(1,1)'

This command accepts the constant default for the mean model.

spec =

spec

Comment:
Distribution:
C:
VarianceModel:
P:

Q:

K:

GARCH:

ARCH:
Leverage:

garchset('VarianceModel','GJR','P',1,'Q"',1)

'Mean: ARMAX(0,0,7?);
'Gaussian'

[]

'"GJR'

1

1

[]

[]

[]

[]

Variance: GJR(1,1)'

AR(2)/GARCH(1,2) with Initial Parameter Estimates

For this command, garchset infers the model orders from the lengths of the
coefficient vectors. garchset assumes a GARCH(P,Q) conditional variance

process as the default.

spec =

garchset('C',0,'AR',[0.5 -0.8],'K',0.0002,...

'GARCH',0.8, "ARCH',[0.1 0.05])
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spec =

Comment:
Distribution:
R:

C:

AR:
VarianceModel:
P:

Q:

K:

GARCH:

ARCH:

'Mean: ARMAX(2,0,?); Variance:

'Gaussian’

2

0

[0.5000 -0.8000]
'"GARCH'

1

2
2.0000e-004

0.8000
[0.1000 0.0500]

Modifying a Specification Structure
This command creates an initial structure, and then updates the existing

structure with additional parameter/value pairs. At each step the result must
be a valid specification structure.

GARCH(1,2)"

spec = garchset('VarianceModel', 'EGARCH','M',1,'P',1,'Q"',1);

spec

spec

Comment:
Distribution:
DoF:

R:

M:

C:

AR:

MA:
VarianceModel:
P:

Q:

K:

GARCH:

ARCH:
Leverage:

garchset(spec, 'R',1, 'Distribution','T")

'Mean: ARMAX(1,1,?); Variance: EGARCH(1,1)'

ITI
[1
1

1
[1
[1

[]
"EGARCH'

1
1

[1
[1
[1
[1
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Retrieving Specification Structure Values
The function garchget retrieves the values of the specification structure fields.

This example creates a specification structure, spec, by providing the model
coefficients, and allowing garchset to infer the model orders from the lengths
of these vectors. garchset assumes the GARCH(P,Q) default variance model.
The example then uses garchget to retrieve the variance model and the model
orders for the conditional mean. Note that you only need to type the leading
characters that uniquely identify the parameter. As illustrated here, garchget
ignores case for parameter names.

garchset('C',0,'AR',[0.5 -0.8],"'K',0.0002,...
'GARCH',0.8, 'ARCH',[0.1 0.05])

spec
spec =

Comment: 'Mean: ARMAX(2,0,?); Variance: GARCH(1,2)'
Distribution: 'Gaussian'
R: 2
C: 0
AR: [0.5000 -0.8000]
VarianceModel: 'GARCH'
P: 1
Q: 2
K: 2.0000e-004
GARCH: 0.8000
ARCH: [0.1000 0.0500]

R = garchget(spec, 'R'")

M = garchget(spec,'m')

0
var = garchget(spec, 'VarianceModel')

var =
GARCH
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Simulation

“Simulation” includes these sections:

Simulating Sample Paths (p. 4-2)

Presample Data (p. 4-6)

Shows you how to simulate single and multiple paths for
return series, innovations, and conditional standard
deviation processes.

Explains the use of automatically generated and
user-supplied presample data. For automatically generated
presample data, this section also discusses response
tolerance and the minimization of transient effects.
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Simulating Sample Paths

¢ “Introduction” on page 4-2
® “Simulating a Single Path” on page 4-3
® “Simulating Multiple Paths” on page 4-4

Introduction

Given models for the conditional mean and variance (see “Conditional Mean
and Variance Models” on page 2-6), the function garchsim can simulate one or
more sample paths for return series, innovations, and conditional standard
deviation processes.

The section “Analysis and Estimation Example Using the Default Model” on
page 2-15 uses the default GARCH(1,1) model to model the
Deutschmark/British pound foreign exchange series. These examples use the
resulting model

Yy, = —6.1919e-005 + ¢,

G, = 1.0761e-006 + 0.80598G,_; +0.15313¢,_;

to simulate sample paths for return series, innovations, and conditional
standard deviation processes.

Use the following commands to restore your workspace if necessary. The text
of this example omits the display output of the estimation to save space.

load garchdata

dem2gbp = price2ret(DEM2GBP) ;
[coeff,errors,LLF,innovations,sigmas] = garchfit(dem2gbp);
coeff

coeff =
Comment: 'Mean: ARMAX(0,0,0); Variance: GARCH(1,1)'
Distribution: 'Gaussian'
C: -6.1919e-005
VarianceModel: 'GARCH'
P: 1
Q: 1
K: 1.0761e-006



Simulating Sample Paths

GARCH: 0.8060
ARCH: 0.1531

Simulating a Single Path

This code generates a single path of 1000 observations. Assuming there are 250
trading days per year, this is roughly fours years’ worth of daily data.
(“Introduction” on page 4-2 tells you how to generate coeff for use in this
example.)

[e,s,y] = garchsim(coeff,1000);
The Workspace Browser shows the result to be a single realization of 1000
observations each for the innovations {¢,} , conditional standard deviations

{0;}, and returns {y,} processes. These processes are designated by the
output variables e, s, and y, respectively.

«J) Workspace =101 x|

File Edit Miew Web ‘Window Help

ﬁ- E | H | ﬁ Stadc:IElase VI

Name Size Eytes|Classz

= 1000%1 5000 | double array L
e 1000%1 5000| double array B
HH v 1000%1 8000 | double array |

Now plot the garchsim output data to see what it looks like.

garchplot(e,s,y)
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